更多“简述DNA变性与蛋白质变性的区别。”相关问题
  • 第1题:

    有关核酸的变性与复性的正确叙述为

    A.热变性后序列互补的DNA分子经缓慢冷却后可复性
    B.热变性后的DNA复性的最适pH为9. 5
    C.热变性后的DNA迅速降温过程也称作退火
    D.热变性后的DNA复性的最佳温度为25°C

    答案:A
    解析:

  • 第2题:

    简述蛋白质变性与变构效应的区别。


    正确答案: 蛋白质变性指因高温、辐射、强酸碱、有机溶剂重金属离子等理化因素作用下,蛋白质天然构象瓦解,理化性质改变,生物活性丧失或部分丧失,是极端环境作用于蛋白质的结果;
    变构效应则是因变构剂与蛋白质变构中心发生特异性结合,导致空间构象变化而被激活或被抑制的现象,是细胞内调节蛋白活性的一种重要方式。

  • 第3题:

    简述蛋白质变性与复性的概念。


    正确答案: 在酸、碱、热、有机溶剂或辐照处理时,蛋白质的二、三、四级结构会发生不同程度的改变,这个过程称之为变性;变性的天然蛋白质,有时在引起变性的因素解除后,恢复原来结构性质的过程称之为蛋白质的复性。

  • 第4题:

    DNA变性与复性


    正确答案:当DNA溶液温度接近沸点或者pH较高时,互补的两条链就可能分开,称为DNA的变性:但DNA双链的这种变性过程是可逆的,当变性DNA的溶液缓慢降温时,DNA的互补链又可重新聚合,重新形成规则的双螺旋。

  • 第5题:

    简述蛋白质的变性与复性


    正确答案: 1、蛋白质的变性作用:在某些物理、化学因素的影响下,蛋白质分子中次级键被破坏,结果蛋白质分子从有序紧密的构象变为无序而松散的构象,即蛋白质分子构象改变至解体的过程。
    变性作用不涉及共价键(肽键和二硫键等)的断裂,一级结构保持完好;变性作用是一个协同过程,此过程是在变性剂浓度很窄范围内;或很窄的pH范围内,或很窄的温度间隔内突然发生的。
    2、引起蛋白质变性因素
    物理因素:热、紫外线照射、高压和表面张力等; 化学因素:酒精、尿素、丙酮等有机溶剂,酸,碱等。 3、变性过程中蛋白质分子的变化:
    (1)蛋白质内部一些侧链基团暴露,如疏水基团外露等。
    (2)蛋白质理化性质改变,如溶解度下降,蛋白质分子伸展,不对称性增加等。
    (3)生物化学性质的改变,如变性后的蛋白质更易被蛋白酶水解等。
    4、生物活性的丧失:生物活性丧失是蛋白质变性的主要特征。有时空间结构只有轻微的局部变化,甚至这些变化还没有影响物理化学性质时,蛋白质的生物活性就已经丧失了。 蛋白质的复性:当变性因素除去后,有些变性的蛋白质又可重新回复其天然构象,这一过程称为复性。

  • 第6题:

    何谓蛋白质的变性与沉淀?二者在本质上有何区别?


    正确答案:蛋白质变性的概念:天然蛋白质受物理或化学因素的影响后,使其失去原有的生物活性,并伴随着物理化学性质的改变,这种作用称为蛋白质的变性。
    变性的本质:分子中各种次级键断裂,使其空间构象从紧密有序的状态变成松散无序的状态,一级结构不破坏。
    蛋白质变性后的表现:
    ① 生物学活性消失;
    ② 理化性质改变:溶解度下降,黏度增加,紫外吸收增加,侧链反应增强,对酶的作用敏感,易被水解。
    蛋白质由于带有电荷和水膜,因此在水溶液中形成稳定的胶体。如果在蛋白质溶液中加入适当的试剂,破坏了蛋白质的水膜或中和了蛋白质的电荷,则蛋白质胶体溶液就不稳定而出现沉淀现象。沉淀机理:破坏蛋白质的水化膜,中和表面的净电荷。
    蛋白质的沉淀可以分为两类:
    (1)可逆的沉淀:蛋白质的结构未发生显著的变化,除去引起沉淀的因素,蛋白质仍能溶于原来的溶剂中,并保持天然性质。如盐析或低温下的乙醇(或丙酮)短时间作用蛋白质。
    (2)不可逆沉淀:蛋白质分子内部结构发生重大改变,蛋白质变性而沉淀,不再能溶于原溶剂。如加热引起蛋白质沉淀,与重金属或某些酸类的反应都属于此类。
    蛋白质变性后,有时由于维持溶液稳定的条件仍然存在,并不析出。因此变性蛋白质并不一定都表现为沉淀,而沉淀的蛋白质也未必都已经变性。

  • 第7题:

    简述影响蛋白质热变性的因素。


    正确答案:1、组成蛋白质的氨基酸种类:氨基酸的组成影响蛋白质的热稳定性,含有较多疏水氨基酸残基的蛋白质,对热的稳定性高于亲水性的蛋白质。
    2、温度的影响:在蛋白质分子中极性相互作用超过非极性相互作用,蛋白质在冻结温度或低于冻结温度比在较高温度时稳定。
    3、含水量:水能促进蛋白质的热变性。
    4、盐和糖:在蛋白质水溶液中添加,可提高热稳定性。
    5、pH。

  • 第8题:

    填空题
    ()是蛋白质变性的结构基础,而()是变性的主要表现,它说明了变性蛋白质与天然蛋白质的根本*区别。

    正确答案: 构象的破坏,生物活性的丧失
    解析: 暂无解析

  • 第9题:

    问答题
    简述蛋白质变性与复性的概念。

    正确答案: 在酸、碱、热、有机溶剂或辐照处理时,蛋白质的二、三、四级结构会发生不同程度的改变,这个过程称之为变性;变性的天然蛋白质,有时在引起变性的因素解除后,恢复原来结构性质的过程称之为蛋白质的复性。
    解析: 暂无解析

  • 第10题:

    问答题
    简述蛋白质变性定义、引起蛋白质变性的因素及影响规律。

    正确答案: (1)在酸、碱、盐、热、有机溶剂、辐射、激烈振荡、热高压等的作用下发生的变化叫做蛋白质的变性。 
    (2)蛋白质变性的物理因素 
    ①加热:蛋白质在某一温度时,会产生状态的剧烈变化。在较低温度下短时间变性是可逆变性;在较高温度长时间变性是不可逆变性;在70-80℃以上,蛋白质二硫键受热而断裂,蛋白质变性作用的速度取决于温度的高低。 
    ②冷冻:一般认为,温度越低,蛋白质的稳定性越高。但也有例外,如肌红蛋白和突变型噬菌体T4溶菌酶分别在30℃和12.5℃时显示最高稳定性,低于或高于此温度时肌红蛋白和T4溶菌酶的稳定性降低,保藏温度低于0℃时这两种蛋白质均遭受冷诱导变性。 
    ③剪切:捏揉、振动或搅打等高速机械剪切都能引起蛋白质变性。剪切的速度越大,蛋白质的变性程度越大。 
    ④高压:大多数蛋白质在100-1200MPa会发生变性。高压诱导的蛋白质变性是高度可逆的。
    ⑤辐射:紫外线、γ-射线和其他电离辐射能改变蛋白质的构象,也使氨基酸残基氧化、共价键断裂、离子化,形成蛋白质自由基以及它们重新结合和聚合。 
    ⑥界面作用:蛋白质吸附在气-液、液-固或液-液界面后,可以发生不可逆的变性。蛋白质具有较松散的结构,在界面上的吸附就比较容易;蛋白质的结构较紧密,或者被二硫键所稳定,或是不具备相对明显的疏水区和亲水区,这类蛋白质由于不易被吸附到界面而较耐界面变性。 
    (3)蛋白质变性的化学因素 
    ①酸碱:大多数蛋白质在pH4~10比较稳定,超过这个范围就会发生变性。 
    ②盐类:在低浓度时,盐的离子与蛋白质发生非特异性的静电相互作用,稳定了蛋白质的结构;在高浓度时,盐具有影响蛋白质结构稳定性的离子特异性:一般氯离子、氟离子、硫酸根是蛋白质结构的稳定剂;而硫氰酸根、三氯乙酸根则是蛋白质结构的去稳定剂。 
    ③非极性溶剂:大多数有机溶剂是蛋白质的变性剂。有机溶剂通过多种方式改变蛋白质的构想。 
    ④蛋白质的变性剂和还原剂:某些有机化合物例如尿素和胍盐的高浓度水溶液破坏了稳定蛋白质构象的疏水相互作用,或者直接与蛋白质分子作用而破坏氢键,导致蛋白质发生不同程度的变性。还原剂(如半胱氨酸、抗坏血酸、β-巯基乙醇、二硫苏糖醇等)可以还原二硫键,从而改变蛋白质的原有构象,造成使蛋白质的不可逆变性。 
    (4)蛋白质变性因素的交互作用:在食品体系中很多时候是多因素复合作用而导致蛋白质变性的,称为蛋白质变性因素的交互作用。两种不同的因素在诱导蛋白质变性中往往具有协同效应。
    解析: 暂无解析

  • 第11题:

    问答题
    何谓蛋白质的变性与沉淀?二者在本质上有何区别?

    正确答案: 蛋白质变性的概念:天然蛋白质受物理或化学因素的影响后,使其失去原有的生物活性,并伴随着物理化学性质的改变,这种作用称为蛋白质的变性。
    变性的本质:分子中各种次级键断裂,使其空间构象从紧密有序的状态变成松散无序的状态,一级结构不破坏。
    蛋白质变性后的表现:
    ① 生物学活性消失;
    ② 理化性质改变:溶解度下降,黏度增加,紫外吸收增加,侧链反应增强,对酶的作用敏感,易被水解。
    蛋白质由于带有电荷和水膜,因此在水溶液中形成稳定的胶体。如果在蛋白质溶液中加入适当的试剂,破坏了蛋白质的水膜或中和了蛋白质的电荷,则蛋白质胶体溶液就不稳定而出现沉淀现象。沉淀机理:破坏蛋白质的水化膜,中和表面的净电荷。
    蛋白质的沉淀可以分为两类:
    (1)可逆的沉淀:蛋白质的结构未发生显著的变化,除去引起沉淀的因素,蛋白质仍能溶于原来的溶剂中,并保持天然性质。如盐析或低温下的乙醇(或丙酮)短时间作用蛋白质。
    (2)不可逆沉淀:蛋白质分子内部结构发生重大改变,蛋白质变性而沉淀,不再能溶于原溶剂。如加热引起蛋白质沉淀,与重金属或某些酸类的反应都属于此类。
    蛋白质变性后,有时由于维持溶液稳定的条件仍然存在,并不析出。因此变性蛋白质并不一定都表现为沉淀,而沉淀的蛋白质也未必都已经变性。
    解析: 暂无解析

  • 第12题:

    填空题
    变性蛋白质同天然蛋白质的区别是(),(),(),()。

    正确答案: 一级结构不变,次级键断裂,空间结构改变,生物学活性丧失
    解析: 暂无解析

  • 第13题:

    DNA的变性与复性


    正确答案:变性是DNA双链的氢键断裂,最后完全变成单链的过程,复性是热变性的DNA缓慢冷却、单链恢复成双链的过程。

  • 第14题:

    有关蛋白质变性的描述中,正确的是()。

    • A、蛋白质变性增加其溶解度
    • B、蛋白质变性由肽链断裂而引起
    • C、蛋白质变性是不可逆的
    • D、蛋白质变性与溶液pH无关
    • E、蛋白质变性可使其生物活性丧失

    正确答案:E

  • 第15题:

    简述易变性职业生涯与传统职业生涯的区别。


    正确答案:首先易变性职业生涯目标是心理成就感.其次易变性职业生涯理论认为员工必须具有动态的学习能力.最后易变性职业生涯的主要特征是“无边界”而传统职业生涯的目标是加薪和晋升.其次传统的职业生涯方式是一种线形的等级结构.此外传统职业生涯还包括专家型的职业生涯方式

  • 第16题:

    简述DNA的变性、复性和核酸的分子杂交。


    正确答案:(1)DNA分子是由两条头尾倒置的脱氧多核苷酸所组成,其中一条链的碱基与另一条链碱基之间有氢键连接,并以A-T、G-C互补,整个DNA分子呈双螺旋结构。在加热、碱性等条件下,链间氢键断裂,形成两条单链结构,此种现象称为DNA变性。
    (2)在去除变性因素后,两条变性的碱基互补的单链DNA可以回复成双链结构,恢复原有的物理化学性质和生物活性,这种现象称为DNA复性。
    (3)热变性的DNA在缓慢冷却过程中,具有碱基序列部分互补的不同的DNA之间或DNA与RNA之间形成杂化双链的现象称为核酸分子杂交。DNA与DNA及RNA与DNA间的分子杂交在核酸研究中有十分广泛的用途。

  • 第17题:

    ()是蛋白质变性的结构基础,而()是变性的主要表现,它说明了变性蛋白质与天然蛋白质的根本*区别。


    正确答案:构象的破坏;生物活性的丧失

  • 第18题:

    变性蛋白质同天然蛋白质的区别是(),(),(),()。


    正确答案:一级结构不变;次级键断裂;空间结构改变;生物学活性丧失

  • 第19题:

    简述蛋白质变性定义、引起蛋白质变性的因素及影响规律。 


    正确答案: (1)在酸、碱、盐、热、有机溶剂、辐射、激烈振荡、热高压等的作用下发生的变化叫做蛋白质的变性。 
    (2)蛋白质变性的物理因素 
    ①加热:蛋白质在某一温度时,会产生状态的剧烈变化。在较低温度下短时间变性是可逆变性;在较高温度长时间变性是不可逆变性;在70-80℃以上,蛋白质二硫键受热而断裂,蛋白质变性作用的速度取决于温度的高低。 
    ②冷冻:一般认为,温度越低,蛋白质的稳定性越高。但也有例外,如肌红蛋白和突变型噬菌体T4溶菌酶分别在30℃和12.5℃时显示最高稳定性,低于或高于此温度时肌红蛋白和T4溶菌酶的稳定性降低,保藏温度低于0℃时这两种蛋白质均遭受冷诱导变性。 
    ③剪切:捏揉、振动或搅打等高速机械剪切都能引起蛋白质变性。剪切的速度越大,蛋白质的变性程度越大。 
    ④高压:大多数蛋白质在100-1200MPa会发生变性。高压诱导的蛋白质变性是高度可逆的。
    ⑤辐射:紫外线、γ-射线和其他电离辐射能改变蛋白质的构象,也使氨基酸残基氧化、共价键断裂、离子化,形成蛋白质自由基以及它们重新结合和聚合。 
    ⑥界面作用:蛋白质吸附在气-液、液-固或液-液界面后,可以发生不可逆的变性。蛋白质具有较松散的结构,在界面上的吸附就比较容易;蛋白质的结构较紧密,或者被二硫键所稳定,或是不具备相对明显的疏水区和亲水区,这类蛋白质由于不易被吸附到界面而较耐界面变性。 
    (3)蛋白质变性的化学因素 
    ①酸碱:大多数蛋白质在pH4~10比较稳定,超过这个范围就会发生变性。 
    ②盐类:在低浓度时,盐的离子与蛋白质发生非特异性的静电相互作用,稳定了蛋白质的结构;在高浓度时,盐具有影响蛋白质结构稳定性的离子特异性:一般氯离子、氟离子、硫酸根是蛋白质结构的稳定剂;而硫氰酸根、三氯乙酸根则是蛋白质结构的去稳定剂。 
    ③非极性溶剂:大多数有机溶剂是蛋白质的变性剂。有机溶剂通过多种方式改变蛋白质的构想。 
    ④蛋白质的变性剂和还原剂:某些有机化合物例如尿素和胍盐的高浓度水溶液破坏了稳定蛋白质构象的疏水相互作用,或者直接与蛋白质分子作用而破坏氢键,导致蛋白质发生不同程度的变性。还原剂(如半胱氨酸、抗坏血酸、β-巯基乙醇、二硫苏糖醇等)可以还原二硫键,从而改变蛋白质的原有构象,造成使蛋白质的不可逆变性。 
    (4)蛋白质变性因素的交互作用:在食品体系中很多时候是多因素复合作用而导致蛋白质变性的,称为蛋白质变性因素的交互作用。两种不同的因素在诱导蛋白质变性中往往具有协同效应。

  • 第20题:

    问答题
    简述蛋白质变性与变构效应的区别。

    正确答案: 蛋白质变性指因高温、辐射、强酸碱、有机溶剂重金属离子等理化因素作用下,蛋白质天然构象瓦解,理化性质改变,生物活性丧失或部分丧失,是极端环境作用于蛋白质的结果;
    变构效应则是因变构剂与蛋白质变构中心发生特异性结合,导致空间构象变化而被激活或被抑制的现象,是细胞内调节蛋白活性的一种重要方式。
    解析: 暂无解析

  • 第21题:

    单选题
    有关蛋白质变性的描述中,正确的是()。
    A

    蛋白质变性增加其溶解度

    B

    蛋白质变性由肽链断裂而引起

    C

    蛋白质变性是不可逆的

    D

    蛋白质变性与溶液pH无关

    E

    蛋白质变性可使其生物活性丧失


    正确答案: C
    解析: 暂无解析

  • 第22题:

    问答题
    简述蛋白质的变性与复性,并说明其分子机制。

    正确答案: (1)在某些物理或化学因素作用下,蛋白质的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失,称为蛋白质的变性。一般蛋白质的变性主要发生二硫键和非共价键的破坏,但不涉及肽链一级结构的断裂。蛋白质变性后,其溶解度降低,粘度增加,丧失结晶能力,易被蛋白酶水解,酶活性和免疫活性丧失。
    (2)若蛋白质变性程度较轻,去除变性因素后,有些蛋白质仍可恢复或部分恢复其原有的构象和功能,称为复性。例如在核糖核酸酶溶液中加入尿素和β—巯基乙醇,可解除其分子中的4对二硫键和氢键,使空间构象遭到破坏,丧失其生物活性。变性后如用透析方法除去尿素和β—巯基乙醇,并设法使巯基氧化成二硫键,核糖核酸酶又将恢复其原来的构象,生物学活性也可几乎全部恢复。但许多蛋白质变性后,空间构象破坏严重,不能复原,称为不可逆性变性。
    解析: 暂无解析

  • 第23题:

    问答题
    简述蛋白质的变性与复性

    正确答案: 1、蛋白质的变性作用:在某些物理、化学因素的影响下,蛋白质分子中次级键被破坏,结果蛋白质分子从有序紧密的构象变为无序而松散的构象,即蛋白质分子构象改变至解体的过程。
    变性作用不涉及共价键(肽键和二硫键等)的断裂,一级结构保持完好;变性作用是一个协同过程,此过程是在变性剂浓度很窄范围内;或很窄的pH范围内,或很窄的温度间隔内突然发生的。
    2、引起蛋白质变性因素
    物理因素:热、紫外线照射、高压和表面张力等; 化学因素:酒精、尿素、丙酮等有机溶剂,酸,碱等。 3、变性过程中蛋白质分子的变化:
    (1)蛋白质内部一些侧链基团暴露,如疏水基团外露等。
    (2)蛋白质理化性质改变,如溶解度下降,蛋白质分子伸展,不对称性增加等。
    (3)生物化学性质的改变,如变性后的蛋白质更易被蛋白酶水解等。
    4、生物活性的丧失:生物活性丧失是蛋白质变性的主要特征。有时空间结构只有轻微的局部变化,甚至这些变化还没有影响物理化学性质时,蛋白质的生物活性就已经丧失了。 蛋白质的复性:当变性因素除去后,有些变性的蛋白质又可重新回复其天然构象,这一过程称为复性。
    解析: 暂无解析