更多“淬火后的钢,回火时随温度的变化,组织会发生不同的转变。() ”相关问题
  • 第1题:

    8.简述淬火钢回火时的组织变化。


    1马氏体中碳原子的偏聚 ⑴含碳量小于0.2%的低碳马氏体中,绝大部分碳原子偏聚到高密度的位错线上,形成柯氏气团。这是由于碳原子和位错的弹性应力场的交互作用,使碳原子被弹性地吸引到位错线上,也称弹性偏聚。马氏体的含碳量为0.2%时,偏聚已达饱和状态。 ⑵含碳量大于0.2%的马氏体,超过0.2%的碳原子以不再偏聚到位错附近,而在垂直c轴的(001)m面上偏聚,伴随有化学自由能降低,正方度c/a增加,硬度、强度有所提高,称为化学偏聚。这种偏聚也为析出亚稳定ε碳化物作准备。 2马氏体的分解 马氏体的分解是自发进行的降低系统自由能的过程,是过饱和碳从固溶体中析出的脱溶过程,可分为两个阶段。 高碳马氏体在100-150℃回火为马氏体分解的第一阶段。碳原子只做短距离迁移,析出的ε碳化物片从周围取得碳原子长大,从而形成贫碳区,远离ε相的地区仍是高碳区,故称为马氏体的二相式分解。 150℃以上回火为马氏体分解的第二阶段,发生连续式分解、碳原子可以作较长距离的迁移,随ε碳化物的析出,α相碳浓度均匀降低,马氏体分解可延续到350℃,此时c/a趋近于1。实验指出,回火温度越高,马氏体碳浓度越低,析出的ε碳化物越多。 3残余奥氏体的转变 含碳量超过0.5%的碳钢或低合金钢,淬火后总有少量残余奥氏体存在,在200-300℃范围内回火时,残余奥氏体分解为过饱和α固溶体和薄片状ε碳化物的复相组织,二者保持共格,一般认为是回火马氏体或下贝氏体。研究证明,残余奥氏体的转变与过冷奥氏体转变一样,也是一个形核和长大的过程,转变生成贝氏体后也出现浮凸现象。 4碳化物的转变 在250-400℃回火时,碳钢马氏体中过饱和碳原子几乎全部脱溶,析出比ε碳化物更稳定的碳化物。一种是χ碳化物,具有单斜晶系;另一种是θ碳化物,也就是渗碳体。 研究证明,条状马氏体在上述温度范围回火时,会直接析出θ相(渗碳体)。这种相以薄片或短杆状形成于马氏体的位错线或界面上。 高碳钢中的淬火马氏体和残余奥氏体在低温回火时,分解成α相和ε相,两相之间保持共格联系。 5碳化物的聚集长大和α相回复、再结晶 当回火温度高于400℃时,渗碳体明显聚集长大并球化,无论片状渗碳体的球化或粒状渗碳体的长大,都通过小颗粒溶解,大颗粒长大的机理进行。由于碳原子的扩散能力近一步增强,铁原子的扩散能力开始恢复,α相中过饱和固溶碳原子全部脱溶,其本身正方度消失,逐渐回复与再结晶,组织中的碳化物也将聚集和球化。 对于条状马氏体来说,回火温度超过400℃时,马氏体的位错密度逐渐降低,剩下的位错又形成二维位错网络,排列成“墙”,构成α相中的亚晶界,从而将其分割成许多亚晶粒。同时,α相中的点阵畸变逐渐消失,称为α相的回复阶段。但是仍保持条形形态。只有回火温度超过600℃时,α相发生再结晶由位错密度降低的等轴晶粒代替回复时的条状组织,条状马氏体形态才消失。 对于高碳钢中的片状马氏体来说,当回火温度超过250℃时,孪晶开始消失,出现位错胞和位错线,显微裂纹逐渐被填合。回火温度达400℃时,孪晶全部消失,α相回复,逐渐形成多边化亚晶粒,仍保持片状特征。当温度高于600℃时,片状马氏体形态消失,等轴状α相代替片状α相。

  • 第2题:

    10、18Cr2Ni4W钢渗碳后M等温淬火热处理工艺:渗碳+高温回火+淬火加热+马氏体等温淬火冷却+高温回火+低温回火。其中,低温回火的作用是什么?

    A.表层高碳淬火M→高碳回火M

    B.芯部高碳淬火M→高碳回火M

    C.表层无组织转变

    D.芯部无组织转变


    错误

  • 第3题:

    淬火后的钢,随回火温度的上升,其强度和硬度也越高。


    A

  • 第4题:

    钢淬火后,回火保温时间确定的基本原则是保证工件透热及组织转变充分。


    正确

  • 第5题:

    1. 淬火钢回火时,组织发生哪几个阶段的变化?


    马氏体分解;残余奥氏体转变;碳化物转变;碳化物聚集长大及α回复与再结晶。