问答题设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1/2。证明:必∃ξ、η∈(a,b),使e2ξ=(eb+ea)[f′(η)+f(η)]eη。

题目
问答题
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1/2。证明:必∃ξ、η∈(a,b),使e2ξ=(eb+ea)[f′(η)+f(η)]eη。

相似考题
更多“设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1/2。证明:必∃ξ、η∈(a,b),使e2”相关问题
  • 第1题:

    (Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.


    答案:
    解析:

  • 第2题:

    设,在x=0连续,且对任何x,y∈R有f(x﹢y)=f(x)﹢f(y)
    证明:(1)f在R上连续;(2)f(x)=xf(1)。


    答案:
    解析:
    (1)因f(0) =f(0+0)=f(0) +f(0) =2f(0),所以f(0)=0。又对任意算∈(一∞,+∞)有△y=f(x+△x) -f(x) =f(x) +f(△x) -f(x) =f(△x)

    (2)先证对任意有理数r,都有以rx)=rf(x)。事实上,令y=x,得以2x)=2f(x),由数学归纳法

  • 第3题:

    设f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。

    A.f(x)在(a,b)上必有最大值

    B.f(x)在(a,b)上必一致连续

    C.f(x)在(a,b)上必有

    D.f(x)在(a,b)上必连续

    答案:D
    解析:
    本题主要考查连续函数的特点。f(x)为开区间(a,b)上的可导函数,则可能出现极值,不一定存在最大值,当函数为分段函数时,不一定有界,故A、C两项错误。可导的函数一定连续,但连续的函数不一定可导,故D项正确。只有f(x)为闭区间[a,b]上的可导函数时才符合一致连续,故B项错误。

  • 第4题:

    设函数f(x)=丨x丨,则函数在点x=0处()

    • A、连续且可导
    • B、连续且可微
    • C、连续不可导
    • D、不可连续不可微

    正确答案:C

  • 第5题:

    单选题
    设函数在(a,b)内连续,则在(a,b)内()。
    A

    f(x)必有界

    B

    f(x)必可导

    C

    f(x)必存在原函数

    D

    D.必存在一点ξ∈(a,,使f(ξ)=0


    正确答案: A
    解析: 暂无解析

  • 第6题:

    问答题
    设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1/2。证明:必∃ξ、η∈(a,b),使e2ξ=(eb+ea)[f′(η)+f(η)]eη。

    正确答案:
    构造函数φ(x)=exf(x),则由f(x)在[a,b]上连续,在(a,b)上可微,可知,φ(x)在[a,b]上连续,且φ′(x)=ex[f′(x)+f(x)]在(a,b)上有意义。
    由拉格朗日中值定理得,必∃η∈(a,b)使ebf(b)-eaf(a)=eη[f′(η)+f(η)](b-a)。
    又f(a)=f(b)=1/2,则上式为(eb-ea)/(b-a)=2eη[f′(η)+f(η)]①
    令g(x)=e2x,则g(x)在[a,b]上连续,且g′(x)=2e2x在(a,b)上有意义。
    由拉格朗日中值定理知,必∃ξ∈(a,b),使(e2b-e2a)/(b-a)=2e2ξ,即(eb-ea)/(b-a)=2e2ξ/(eb+ea)②
    由①②得2e2ξ/(eb+ea)=2eη[f′(η)+f(η)],即e2ξ=(eb+ea)eη[f′(η)+f(η)]。
    解析: 暂无解析

  • 第7题:

    问答题
    设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)·f(b)>0,f(a)·f[(a+b)/2]<0。试证:对任意实数k,∃ξ∈(a,b),使得f′(ξ)=kf(ξ)。

    正确答案:
    令F(x)=e-kxf(x)(a≤x≤b),则F(a)F(b)>0,F(a)F[(a+b)/2]<0,由介值定理得∃ξ1ξ2:a<ξ1<(a+b)/2<ξ21)=F(ξ2)=0。
    由罗尔定理得∃ξ∈(ξ12)⊂(a,b),使得F′(ξ)=0,即e-[f′(ξ)-kf(ξ)]=0。故f′(ξ)=kf(ξ)。
    解析: 暂无解析

  • 第8题:

    问答题
    设f(x)在[a,b]上连续(a>0),在(a,b)内可导,证明:必∃ξ∈(a,b),使[f(a)-f(ξ)]/(ξ2-b2)=f′(ξ)/(2ξ)。

    正确答案:
    构造函数φ(x)=(x2-b2)[f(a)-f(x)],则φ′(x)=2x[f(a)-f(x)]-(x2-b2)f′(x)在(a,b)上有意义。
    而φ(a)=0=φ(b)。则由罗尔定理得,必∃ξ∈(a,b),使φ′(ξ)=2ξ[f(a)-f(ξ)]-(ξ2-b2)f′(ξ)=0。
    即[f(a)-f(ξ)]/(ξ2-b2)=f′(ξ)/(2ξ)。
    解析: 暂无解析

  • 第9题:

    问答题
    设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,且存在相等的最大值。若f(a)=g(a),f(b)=g(b),证明:  (1)存在η∈(a,b)使f(η)=g(η);  (2)存在ξ∈(a,b)使f″(ξ)=g″(ξ)。

    正确答案:
    (1)构造函数h(x)=f(x)-g(x),由f(a)=g(a),f(b)=g(b)可知,h(a)=h(b)=0。可设f(x),g(x)在(a,b)内的最大值M,分别在α∈(a,b),β∈(a,b)处取得。
    当α=β时,令η=α,则h(η)=0;
    当α≠β时,h(α)=f(α)-g(α)=M-g(α)≥0,h(β)=f(β)-g(β)=f(β)-M≤0。由介值定理可知,存在介于α和β之间的点η使得h(η)=0。综上所述,∃η∈(a,b),使得h(η)=0。
    (2)根据罗尔定理可知,∃ξ1∈(a,η),∃ξ2∈(η,b),使得h′(ξ1)=h′(ξ2)=0。再由罗尔定理可知,∃ξ∈(ξ12)⊂(a,b),使得h″(ξ)=0,即f″(ξ)=g″(ξ)。
    解析: 暂无解析

  • 第10题:

    问答题
    设f(x)在[0,π]上连续,在(0,π)内可导,证明:必∃ξ∈(0,π),使f′(ξ)+3f(ξ)cotξ=0。

    正确答案:
    构造函数φ(x)=sin3x·f(x),则由于f(x)在[0,π]上连续,故φ(x)也在[0,π]上连续。
    且φ′(x)=sin3x·f′(x)+3sin2xcosx·f(x)在(0,π)有意义。
    又φ(0)=φ(π)=0,根据罗尔定理得,必∃ξ∈(0,π),使φ′(ξ)=sin3ξ·f′(ξ)+3sin2ξcosξ·f(ξ)=0,即sin3ξ[f′(ξ)+3f(ξ)cotξ]=0。
    而(0,π)上sinξ≠0。故f′(ξ)+3f(ξ)cotξ=0。
    解析: 暂无解析

  • 第11题:

    问答题
    设函数f(x)在(a,b)内连续,a<x1<x2<…<xn<b,证明:必∃ξ∈(a,b),使f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。

    正确答案:
    设f(x)在[x1,xn]上的最大值为M,最小值为m。
    则由题设可知,f(x)在[x1,xn]上连续,则它在[x1,xn]上必有最大值和最小值,则m≤[f(x1)+f(x2)+…+f(xn)]/n≤M。
    由最值介值定理可知,必∃ξ∈[x1,xn]⊂(a,b),使得f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。
    解析: 暂无解析

  • 第12题:

    单选题
    设函数f(x)={x2,x≤1;ax+b,x>1},为使函数f(x)在x=1处连续且可导,则()。
    A

    a=1,b=0

    B

    a=0,b=1

    C

    a=2,b=-1

    D

    a=-1,b=2


    正确答案: A
    解析: 暂无解析

  • 第13题:

    下列命题中,正确的是( ).

    A.单调函数的导函数必定为单调函数
    B.设f´(x)为单调函数,则f(x)也为单调函数
    C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点
    D.设f(x)在(a,b)内可导且只有一个极值点xo,f´(xo)=0

    答案:D
    解析:
    可导函数的极值点必定是函数的驻点,故选D.

  • 第14题:

    设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。


    答案:
    解析:

  • 第15题:

    设函数在(a,b)内连续,则在(a,b)内()。

    • A、f(x)必有界
    • B、f(x)必可导
    • C、f(x)必存在原函数
    • D、D.必存在一点ξ∈(a,,使f(ξ)=0

    正确答案:C

  • 第16题:

    问答题
    设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

    正确答案:
    首先证明存在性。
    作辅助函数F(x)=f(x)-x,由题设00。
    根据连续函数介值定理,在(0,1)上至少存在一点ξ∈(0,1),使得F(ξ)=0。即f(ξ)-ξ=0。
    用反证法证明唯一性。
    设012<1,且f(x1)=x1,f(x2)=x2,即F(x1)=F(x2)=0。
    根据罗尔定理知,存在x0∈(x1,x2)⊂(0,1)使得F′(x0)=0,即f′(x0)=1,这与题目中f′(x)≠1相矛盾,故在(0,1)内有且仅有一个x,使得f(x)=x。
    解析: 暂无解析

  • 第17题:

    填空题
    设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=____。

    正确答案: 2e3
    解析:
    因f′(x)=efx方程两边对x求导,得f″(x)=efx·f′(x)=efx·efx=e2fx,两边再对x求导,得f‴(x)=e2fx·2f′(x)=2e2fx·efx=2e3fx。又f(2)=1,则f‴(2)=2e3f2=2e3

  • 第18题:

    问答题
    设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

    正确答案:
    因为f(x)不恒为常数,且f(a)=f(b),故必存在一点c∈(a,b),满足f(c)≠f(a)=f(b)。
    若f(c)>f(a)=f(b),f(x)在[a,c]上满足拉格朗日中值定理,故至少存在一点ξ∈(a,c)⊂(a,b),使得f′(ξ)=[f(c)-f(a)]/(c-a)>0。
    若f(c)0。综上命题得证。
    解析: 暂无解析

  • 第19题:

    问答题
    设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:必∃ξ∈(0,1)使ξ2f″(ξ)+4ξf′(ξ)+2f(ξ)=0。

    正确答案:
    构造函数F(x)=x2f(x),由于f(x)在[0,1]上二阶可导,则F(x)也在[0,1]上二阶可导。
    又F′(0)=[2xf(x)+x2f′(x)]x=0=0,F″(x)=2f(x)+4xf′(x)+x2f″(x)。
    故根据泰勒公式有F(1)=F(0)+F′(0)(1-0)+F″(ξ)(1-0)2/(2!)=0,其中ξ∈(0,1)。
    所以F″(ξ)/2=[2f(ξ)+4ξf′(ξ)+ξ2f″(ξ)]/2=0。
    即2f(ξ)+4ξf′(ξ)+ξ2f″(ξ)=0。
    解析: 暂无解析

  • 第20题:

    问答题
    设f(x),f′(x)在[a,b]上连续,f″(x)在(a,b)内存在,f(a)=f(b)=0,且存在c∈(a,b)使f(c)>0。证明:必∃ξ∈(a,b)使f″(ξ)<0。

    正确答案:
    因f(x),f′(x)在[a,b]上连续,且c∈(a,b),则f(x)在[a,c]和[c,b]上满足拉格朗日中值定理的条件,故∃a<η121),[f(b)-f(c)]/(b-c)=f′(η2)。
    由题设可知,f(c)>0,f(a)=f(b)=0,则f′(η1)>0,f′(η2)<0。
    又f″(x)在(a,b)内存在,则f′(x)在[η12]上满足拉格朗日中值定理的条件,故f′(η2)-f′(η1)=f″(ξ)(η21)<0,其中ξ∈(a,b),从而f″(ξ)<0。
    解析: 暂无解析

  • 第21题:

    问答题
    设f′(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f[(a+b)/2]<0,试证至少存在一个点ξ∈(a,b)使f′(ξ)=f(ξ)。

    正确答案:
    构造函数F(x)=e-xf(x)。
    不妨设f(a)>0,则f(b)>0,f[(a+b)/2]<0。故F(a)=e-af(a)>0,F[(b+a)/2]=e-(b+a)/2f[(b+a)/2]<0,F(b)=e-bf(b)>0。
    又F(x)在[a,(b+a)/2]和[(b+a)/2,b]上连续,则必∃c1∈(a,(b+a)/2),c2∈((b+a)/2,b),使F(c1)=F(c2)=0。
    F(x)在[c1,c2]上满足罗尔定理的条件,故∃ξ∈(c1,c2)⊂(a,b),使F′(ξ)=e-ξ[f′(ξ)-f(ξ)]=0,即f′(ξ)=f(ξ),(e-ξ>0)。
    解析: 暂无解析

  • 第22题:

    单选题
    设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=(  )。
    A

    e2

    B

    2e2

    C

    e3

    D

    2e3


    正确答案: B
    解析:
    因f′(x)=ef(x方程两边对x求导,得f″(x)=ef(x·f′(x)=ef(x·ef(x=e2f(x,两边再对x求导,得f‴(x)=e2f(x·2f′(x)=2e2f(x·ef(x=2e3f(x。又f(2)=1,则f‴(2)=2e3f(2=2e3

  • 第23题:

    单选题
    设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=(  )。
    A

    e2

    B

    e3

    C

    2e2

    D

    2e3


    正确答案: C
    解析:
    因f′(x)=efx方程两边对x求导,得f″(x)=efx·f′(x)=efx·efx=e2fx,两边再对x求导,得f‴(x)=e2fx·2f′(x)=2e2fx·efx=2e3fx。又f(2)=1,则f‴(2)=2e3f2=2e3

  • 第24题:

    问答题
    设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。

    正确答案:
    由题设条件f(a)<0,k>0可得a-f(a)/k>a。
    令b=a-f(a)/k,根据拉格朗日中值定理得
    f(b)=f(a)+f′(ξ)(b-a)=f(a)+f′(ξ)[-f(a)/k]=-f(a)[f′(ξ)/k-1]>0,(a<ξk)
    由零点定理得f(x)=0在(a,b)内至少有一个实根。又f′(x)>0,即f(x)单调增加。故f(x)=0在(a,b)内仅有一个实根。
    解析: 暂无解析