更多“设函数f(x)与g(x)在[0,1]上连续,且f(x)≤g(x),且对任何的c∈(0,1)( ) ”相关问题
  • 第1题:

    设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。

    A. [f(x)/g(x)]>[f(a)/g(b)]
    B. [f(x)/g(x)]>[f(b)/g(b)]
    C. f(x)g(x)>f(a)g(a)
    D. f(x)g(x)>f(b)g(b)

    答案:C
    解析:
    因为[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)>0,所以函数f(x)g(x)在[a,b]上单调递增。所以,当x∈(a,b)时,f(a)g(a)<f(x)g(x)<f(b)g(b)。

  • 第2题:

    设f(x)二阶可导,f(0)= f(1),且f(x)在[0,1]上的最小值为—1.证明:


    答案:
    解析:

  • 第3题:

    设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:
      (Ⅰ)存在ξ∈(0,1),使得f'(ξ)=1;
      (Ⅱ)存在η∈(-1,1),使得f"(η)+f'(η)=1.


    答案:
    解析:
    【证明】(Ⅰ)因为f(x)是区间[-1,1]上的奇函数,所以f(0)=0.
    因为函数f(x)在区间[0,1]上可导,根据拉格朗日中值定理,存在ξ∈(0,1),使得
    f(1)-f(0)=f'(ξ).
    又因为f(1)=1,所以f'(ξ)=1.
    (Ⅱ)【证明】(方法一)因为f(x)是奇函数,所以f'(x)是偶函数,故f'(-ξ)=f'(ξ)=1.
    令F(x)=[f'(x)-1]e^x,则F(x)可导,且F(-ξ)=F(ξ)=0.
    根据罗尔定理,存在

    使得F'(η)=0.

    (方法二)因为f(x)是[-1,1]上的奇函数,所以f'(x)是偶函数,
    令F(x)=f'(x)+f(x)-x,则F(x)在[-1,1]上可导,且
    F(1)=f'(1)+f(1)-1=f'(1)
    F(-1)=f'(-1)+f(-1)+1=f'(1)-f(1)+1=f'(1)
    由罗尔定理可知,存在η∈(-1,1),使得F'(η)=0.
    由F'(x)=f(x)+f'(x)-1,知
    f(η)+f'(η)-1=0,f(η)+f'(η)=1.
    (方法三)因为f(x)是[-1,1]上的奇函数,所以f'(x)是偶函数,f(x)是奇函数,由(Ⅰ)知,存在ξ∈(0,1),使得f'(ξ)=1.
    令F(x)=f'(x)+f(x)-x,则F'(x)=f(x)+f'(x)-1,
    F'(ξ)=f(ξ)+f'(ξ)-1=f(ξ)
    F'(-ξ)=f(-ξ)+f'(-ξ)-1=-f(ξ)
    当f(ξ)=0时,f(ξ)+f'(ξ)-1=0,即f(ξ)+f'(ξ)=1.结论得证.
    当f(ξ)≠0时,F'(ξ)F'(-ξ)=-[f(ξ)]^2<0,
    根据导函数的介值性,存在,使得F'(η)=0.即f(η)+f'(η)-1=0
    故f(η)+f'(η)=1.
    【评注】本题是一道微分中值定理的证明题,其难点在于(Ⅱ)中辅助函数的构造.欲证f(η)+f'(η)=1,只要证f(η)+(f'(η)-1)=0,即,因此,应考虑辅助函数F(x)=[f'(x)-1]e^x;另一种思路是欲证f(η)+f'(η)=1,只要证f(η)+f'(η)-1=0,因此,应考虑辅助函数F(x)=f'(x)+f(x)-x.
    方法三中用到达布定理即(导函数的的介值性),这个定理不是<考试大纲》要求的考试内容,部分考生给出了此种解法,只要书写正确,不影响得分.

  • 第4题:

    设函数f(x)在区间[0,1]上具有2阶导数,且,证明:
      (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;
      (Ⅱ)方程在区间(0,1)内至少存在两个不同实根.


    答案:
    解析:

  • 第5题:

    若函数f(x)在[0,1]上黎曼可积,则f(x)在[0,1]上( )。

    A.连续
    B.单调
    C.可导
    D.有界

    答案:D
    解析:

  • 第6题:

    设函数f(x)在(0,1)内可导,f'(x)>0,则f(x)在(0,1)内(  )

    A.单调减少
    B.单调增加
    C.为常量
    D.不为常量,也不单调

    答案:B
    解析:
    由于f'(x)>0,可知f(x)在(0,1)内单调增加.因此选B.

  • 第7题:

    设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )

    A.f(x)g(b)>f(b)g(x)
    B.f(x)g(a)>f(a)g(x)
    C.f(x)g(x)>f(b)g(b)
    D.f(x)g(x)>f(a)g(a)

    答案:A
    解析:

  • 第8题:

    已知函数



    (1)求f(x)单调区间与值域;
    (2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1]。若对于任意x1∈[0,1],总存在x0∈[0,1]使g(x0)=f(x1)成立,求a的取值范围。



    答案:
    解析:

  • 第9题:

    问答题
    设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

    正确答案:
    首先证明存在性。
    作辅助函数F(x)=f(x)-x,由题设00。
    根据连续函数介值定理,在(0,1)上至少存在一点ξ∈(0,1),使得F(ξ)=0。即f(ξ)-ξ=0。
    用反证法证明唯一性。
    设012<1,且f(x1)=x1,f(x2)=x2,即F(x1)=F(x2)=0。
    根据罗尔定理知,存在x0∈(x1,x2)⊂(0,1)使得F′(x0)=0,即f′(x0)=1,这与题目中f′(x)≠1相矛盾,故在(0,1)内有且仅有一个x,使得f(x)=x。
    解析: 暂无解析

  • 第10题:

    问答题
    设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:必∃ξ∈(0,1)使ξ2f″(ξ)+4ξf′(ξ)+2f(ξ)=0。

    正确答案:
    构造函数F(x)=x2f(x),由于f(x)在[0,1]上二阶可导,则F(x)也在[0,1]上二阶可导。
    又F′(0)=[2xf(x)+x2f′(x)]x=0=0,F″(x)=2f(x)+4xf′(x)+x2f″(x)。
    故根据泰勒公式有F(1)=F(0)+F′(0)(1-0)+F″(ξ)(1-0)2/(2!)=0,其中ξ∈(0,1)。
    所以F″(ξ)/2=[2f(ξ)+4ξf′(ξ)+ξ2f″(ξ)]/2=0。
    即2f(ξ)+4ξf′(ξ)+ξ2f″(ξ)=0。
    解析: 暂无解析

  • 第11题:

    问答题
    设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,且存在相等的最大值。若f(a)=g(a),f(b)=g(b),证明:  (1)存在η∈(a,b)使f(η)=g(η);  (2)存在ξ∈(a,b)使f″(ξ)=g″(ξ)。

    正确答案:
    (1)构造函数h(x)=f(x)-g(x),由f(a)=g(a),f(b)=g(b)可知,h(a)=h(b)=0。可设f(x),g(x)在(a,b)内的最大值M,分别在α∈(a,b),β∈(a,b)处取得。
    当α=β时,令η=α,则h(η)=0;
    当α≠β时,h(α)=f(α)-g(α)=M-g(α)≥0,h(β)=f(β)-g(β)=f(β)-M≤0。由介值定理可知,存在介于α和β之间的点η使得h(η)=0。综上所述,∃η∈(a,b),使得h(η)=0。
    (2)根据罗尔定理可知,∃ξ1∈(a,η),∃ξ2∈(η,b),使得h′(ξ1)=h′(ξ2)=0。再由罗尔定理可知,∃ξ∈(ξ12)⊂(a,b),使得h″(ξ)=0,即f″(ξ)=g″(ξ)。
    解析: 暂无解析

  • 第12题:

    问答题
    设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且对于(a,b)内一切x有f′(x)g(x)-f(x)g′(x)≠0。证明:如果f(x)在(a,b)内有两个零点,则介于两个零点之间,g(x)至少有一个零点。

    正确答案:
    构造函数φ(x)=f(x)/g(x),并设x1、x2∈(a,b)是f(x)的两个零点,且x12。由f′(x)g(x)≠f(x)g′(x)可知,x1、x2不是g(x)的零点。
    假设g(x)在(x1,x2)内没有零点,则函数φ(x)在[x1,x2]上可导,且φ(x1)=φ(x2)=0。
    根据罗尔定理得,必∃ξ∈(x1,x2),使得
    φ′(ξ)=[f′(ξ)g(ξ)-f(ξ)g′(ξ)]/g2(ξ)=0,即f′(ξ)g(ξ)-f(ξ)g′(ξ)=0与已知条件矛盾,故g(x)在(x1,x2)内至少有一个零点。
    解析: 暂无解析

  • 第13题:

    设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,


    答案:
    解析:

  • 第14题:

    设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上



    A.A当f'(x)≥0时,f(x)≥g(x)
    B.当f'(x)≥0时,f(x)≤g(x)
    C.当f"(x)≥0时,f(x)≥g(x)
    D.当f"(x)≥0时,f(x)≤g(x)

    答案:D
    解析:
    由于g(0)=f(0),g(1)=f(1),则直线y=f(0)(1-x)+f(1)x过点(0,f(0))和(1,f(1)),当f"(x)≥0时,曲线y=f(x)在区间[0,1]上是凹的,曲线y=f(x)应位于过两个端点(0,f(0))和(1,f(1))的弦y=f(0)(1-x)+f(1)x的下方,即f(x)≤g(x)故应选(D).
    (方法二)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,
    则 F'(x)=f'(x)+f(0)-f(1),F"(x)=f"(x).当f"(x)≥0时,F"(x)≥0,则曲线y=F(x)在区间[0,1]上是凹的.又F(0)=F(1)=0,从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).
    (方法三)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,

    则 F(x)=f(x)[(1-x)+x]-f(0)(1-x)-f(1)x

    =(1-x)[f(x)-f(0)]-x[f(1)-f(x)]
       =x(1-x)f'(ξ)-x(1-x)f'(η) (ξ∈(0,x),η∈(x,1))
       =x(1-x)[f'(ξ)-f'(η)]
      当f"(x)≥0时,f'(x)单调增,f'(ξ)≤f'(η),从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).

  • 第15题:

    设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求


    答案:
    解析:

    所以,令x=y=1,且注意到g(1)=1,g'(1)=0,得

  • 第16题:

    设,在x=0连续,且对任何x,y∈R有f(x﹢y)=f(x)﹢f(y)
    证明:(1)f在R上连续;(2)f(x)=xf(1)。


    答案:
    解析:
    (1)因f(0) =f(0+0)=f(0) +f(0) =2f(0),所以f(0)=0。又对任意算∈(一∞,+∞)有△y=f(x+△x) -f(x) =f(x) +f(△x) -f(x) =f(△x)

    (2)先证对任意有理数r,都有以rx)=rf(x)。事实上,令y=x,得以2x)=2f(x),由数学归纳法

  • 第17题:

    已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)一g(x)=X3+x2+1,则f(1)+g(1)=( )。

    A.-3
    B.-1
    C.1
    D.3

    答案:C
    解析:
    令X=﹣1,可得f(一1)-g(一1)=1,又由于f(x),g(x)分别是定义在R上的偶函数和奇函数,即f(一l) =f(1),g(-1)=g(1),则f(一1) -g(1) =f( 1) +g(1)=1,所以答案为C。

  • 第18题:

    设函数f(x)与g(x)均在(a,b)可导,且满足f'(x)
    A.必有f(x)>g(x)
    B.必有f(x)C.必有f(x)=g(x)
    D.不能确定大小

    答案:D
    解析:
    由f'(x)

  • 第19题:

    设f(x)和g(x)在(-∞,+∞)内可导,且f(x)<g(x),则必有( )《》( )


    答案:C
    解析:

  • 第20题:

    设g(x),f(x)∈F[x],存在d(x)∈F[x],有d(x)|f(x)且d(x)|g(x),那么称d(x)为f(x),g(x)的什么?()

    • A、公因式
    • B、最大公因式
    • C、最小公因式
    • D、共用函数

    正确答案:A

  • 第21题:

    问答题
    设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b(其中a、b都是非负常数),c是(0,1)内任一点。  (1)写出f(x)在点x=c处带拉格朗日余项的一阶泰勒公式;  (2)证明:|f′(c)|<2a+b/2。

    正确答案:
    (1)f(x)在x=c处带拉格朗日余项的一阶泰勒公式为f(x)=f(c)+f′(c)(x-c)+f″(ξ)(x-c)2/(2!),其中ξ介于x和c之间。
    (2)证明:在(1)中所得结论中,令x=0得
    f(0)=f(c)+f′(c)(-c)+f″(ξ1)c2/(2!)①
    令x=1得
    f(1)=f(c)+f′(c)(1-c)+f″(ξ2)(1-c)2/(2!)②
    ②-①得f(1)-f(0)=f′(c)+[(1-c)2f″(ξ2)-c2f″(ξ1)]/2,则
    ,f′(c),=,f(1)-f(0)-[(1-c)2f″(ξ2)-c2f″(ξ1)]/2,≤,f(1),+,f(0),+,f″(ξ2),(1-c)2/2+c2,f″(ξ1),/2≤a+a+b[(1-c)2+c2]/2
    又02+c2<1,则,f′(c),<2a+b/2。
    解析: 暂无解析

  • 第22题:

    单选题
    设g(x),f(x)∈F[x],存在d(x)∈F[x],有d(x)|f(x)且d(x)|g(x),那么称d(x)为f(x),g(x)的什么?()
    A

    公因式

    B

    最大公因式

    C

    最小公因式

    D

    共用函数


    正确答案: A
    解析: 暂无解析

  • 第23题:

    单选题
    设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。[2018年真题]
    A

    f(x)/g(x)>f(a)/g(b)

    B

    f(x)/g(x)>f(b)/g(b)

    C

    f(x)g(x)>f(a)g(a)

    D

    f(x)g(x)>f(b)g(b)


    正确答案: C
    解析:
    因为[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)>0,所以函数f(x)g(x)在[a,b]上单调递增。所以,当x∈(a,b)时,f(a)g(a)<f(x)g(x)<f(b)g(b)。